skip to main content


Search for: All records

Creators/Authors contains: "Bloom, Ira"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window. 
    more » « less